阅读历史 |

五(2 / 3)

加入书签

到处都是监控。当年查线索,全靠群众,只要有一个知情人不愿配合,就有可能改变整个侦查方向。”

古军感慨道:“可不是嘛!本案一没目击证人,二连死者是谁都搞不清楚。以那时的条件,根本连个抓手都没有。”

他说着把车停在了应急车道上:“我们到了!”

展峰下了车,站在中心现场环视四周。

“南北走向的双向四车道,水泥路面,可见少许坑洼及柏油补丁痕迹。跟高速公路不同的是,省道限速,车辆行驶缓慢,路中没有修建护栏。省道以西为庄稼地,东侧是一片树林。”展峰走向东边,对比平板电脑上当时的照片,“1991年案发时,公路两旁除了杂草什么都看不见。装尸的油桶是在东侧被发现的。”展峰继续来到路边,“二十八年前,两侧都是荒地,抛尸条件相同的情况下,凶手只会根据行车方向决定抛尸方位。所以,他应该是由南向北行驶。”

展峰让嬴亮测量了一下,路边防撞护栏高约80厘米,对比当年方位照,护栏材质有所变化,但高度差不多保持不变。

“护栏的顶部并没有脱漆痕迹,”展峰注意到原始现场局部照上的细节,“抛尸时,装尸的油桶未与护栏发生接触。”

“死者重78公斤,空桶重21公斤,两者加在一起,接近200斤,能把这么重的东西,抓举到80厘米的高度,没有一定的体力,绝对做不到。”司徒蓝嫣说着来到展峰身边。

走到护栏跟前,展峰仔细观察了一下东侧的地形,坡度很陡,几乎垂直于地面,这或许也是要将护栏修得如此之高的原因。

“假设以抛尸处为a点,垂直于地面处为b点,发现尸体处为c点,将三点相连,可画出一个模糊的直角三角形。”展峰迅速用手在现场照片上画出三角形,“参照当年测量的数值:ab高约为31米,bc长约为67米。”

展峰回头对嬴亮招招手。“你从车上找一件重物,用全力扔出去。”

嬴亮二话没说,举起5公斤的车载灭火器,扔出近8米远。要知道,嬴亮除了吃饭睡觉,所有时间都泡在健身房里,连吕瀚海给他起的外号都叫“肌肉亮”,他上肢肌群的爆发力非一般人可以比拟,然而与柴油桶重量相差二十倍的灭火器也只能丢出这么远。

展峰沉吟片刻问:“100公斤的东西能举起来这样扔吗?”

“恐怕办不到。”嬴亮坦言。

展峰在平板电脑上列出了一个物理学模型。他把凶手的抛尸动作,拟化成一个类似于标枪的抛射体运动。这样就可以引用力学、空气动力学以及运动生理学的理论进行分析。据抛物线方程,可以推导出抛射体(柴油桶)的射程(bc长)。即

公式中重力加速度(g)是一个常数,所以柴油桶飞行的距离(bc)主要取决于油桶出手时的初速度(v)和出手角度(a)。

从公式中可以得知,如果抛射角度不变,初速度v越大,bc就越远。人体肌肉发力时,必须作用在柴油桶的运动方向上,只有使力作用的距离长、时间短,才能提升油桶的出手速度。这就要求,凶手的体力不光要好,还要有一定的臂长,而臂长又和身高成正比,相同条件下,出手点越高,投掷距离也就越远。

已知本案的抛掷距离(直角三角形bc边的边长),展峰只要再测出地斜角的角度(直角三角形底角),就可以算出油桶的出手高度h,用h减去公路至地面的垂直距离31米,算出的结果便是凶手的大致身高。

分析完出手速度v,再看出手角度a。

公式带入的是s2a。那么角度a是不是越大就越好?答案当然是否定的。参照s值对照表[1],从表中可以很容易地看出,s2a要想为最大值,那么角2a的度数以接近90°最佳,这样一来,出手角度要保持在45°左右,才能得到最远的抛距。

[1] s0°=0;s30°=1/2;s45°=/2;s60°=/2;s90°=1;s120°=/2;s135°=/2;s150°=1/2;s180°=0;s210°=-1/2;s225°=-/2;s240°=-/2;s270°=-1;s300°=-/2;s315°=-/2;s330°=-1/2;s360°=0。

为了求证物理模型的准确性,展峰决定做一次侦查实验。他从市局特警支队抽调身高在一米八五至一米九零、身体素质过硬的特战民警参与其中。经多番抛掷实验,展峰摇头。“助跑投掷不太可能实现。”

“这是怎么确定的?”古军好奇地问。

“理由有三:一是抛尸点发生在公路旁,并未安装路灯,助跑存在一定的危险性;二是在助跑的过程中,会在地面留下堆土痕迹,现场并未发现;三是助跑时,可增加出手速度,这样抛掷距离,会远大于实际测算距离。”

展峰继续讲解说:“排除了这个重要干扰因素,得出的结论与实际就不会有太大偏差,可以算出凶手的身高范围……”

又是一番计算

↑返回顶部↑

书页/目录